首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10883篇
  免费   1381篇
  国内免费   1506篇
化学   12459篇
晶体学   50篇
力学   102篇
综合类   62篇
数学   231篇
物理学   866篇
  2023年   66篇
  2022年   89篇
  2021年   195篇
  2020年   201篇
  2019年   278篇
  2018年   201篇
  2017年   310篇
  2016年   375篇
  2015年   657篇
  2014年   704篇
  2013年   757篇
  2012年   1111篇
  2011年   777篇
  2010年   712篇
  2009年   767篇
  2008年   831篇
  2007年   839篇
  2006年   754篇
  2005年   703篇
  2004年   689篇
  2003年   534篇
  2002年   330篇
  2001年   255篇
  2000年   220篇
  1999年   202篇
  1998年   157篇
  1997年   169篇
  1996年   113篇
  1995年   120篇
  1994年   119篇
  1993年   112篇
  1992年   96篇
  1991年   88篇
  1990年   86篇
  1989年   50篇
  1988年   33篇
  1987年   14篇
  1986年   14篇
  1985年   8篇
  1984年   8篇
  1983年   3篇
  1982年   9篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1972年   1篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
21.
A convenient one‐pot synthesis of linear–hyperbranched polyphosphoesters (l–HBPPEs) was accomplished by a tandem ring‐opening metathesis polymerization (ROMP) and acyclic diene metathesis (ADMET) polymerization procedure. A linear monotelechelic poly(norbornene) with a terminal acrylate and many pendent thiol groups is first prepared through adding an internal cis‐olefin terminating agent to the reaction mixture immediately after the completion of the living ROMP, and then utilized as a macromolecular chain stopper in subsequent ADMET polymerization of a phosphoester functional AB2 monomer, yielding l–HBPPEs as the reaction time prolonged. These l–HBPPEs bearing lots of pendent thiol groups in linear poly(norbornene) and peripheral acrylate groups in HBPPE could be self‐crosslinked in ultradilute solution through thiol‐Michael addition click reaction between acrylate and thiol to give single‐molecule nanoparticles with comparatively uniform size. This facile approach can be extended toward the fabrication of novel nanomaterials with sophisticated structures and tunable multifunctionalities. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 964–972  相似文献   
22.
We have synthesized a series of triarylamine‐cored molecules equipped with an adjacent amide moiety and dendritic peripheral tails in a variety of modes. We show by 1H NMR and UV/Vis spectroscopy that their supramolecular self‐assembly can be promoted in solution upon light stimulation and radical initiation. In addition, we have probed their molecular arrangements and mesomorphic properties in the bulk by integrated studies on their film state by using differential scanning calorimetry (DSC), variable‐temperature polarizing optical microscopy (VT‐POM), variable‐temperature X‐ray diffraction (VT‐XRD), and atomic force microscopy (AFM). Differences in the number and the disposition of the peripheral tails significantly affect their mesomorphic properties associated with their lamellar‐ or columnar‐packed nanostructures, which are based on segregated stacks of the triphenylamine cores and the lipophilic/lipophobic periphery. Such structural tuning is of interest for implementation of these soft self‐assemblies as electroactive materials from solution to mesophases.  相似文献   
23.
Light‐responsive poly(carbonate)s PEG113b‐PMPCn‐SP were synthesized via copper catalyzed azide‐alkyne cycloaddition reaction between azide‐modified spiropyran (SP‐N3) and amphiphilic copolymer PEG113b‐PMPCn. PEG113b‐PMPC25‐SP can self‐assemble to biocompatible micelles with an average diameter of ~96 nm and a critical aggregation concentration of 0.0148 mg mL?1. Under 365 nm UV light irradiation, the characteristic absorption intensity of merocyanine (MC) progressively increased and most of the micellar aggregations were disrupted within 10 min, suggesting the completion of the transformation of hydrophobic SP to hydrophilic MC. Subsequent exposuring the micelles to 620 nm visible light, spherical micelles aggregated again. The light‐controlled release and re‐encapsulation behaviors of coumarin 102‐loaded micelles were further investigated by fluorescence spectroscopy. This study provides a convenient way to construct smart poly(carbonate)s nanocarriers for controlled release and re‐encapsulation of hydrophobic drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 750–760  相似文献   
24.
Self‐assembly of AB2 and AB3 type low molecular weight poly(aryl ether) dendrons that contain hydrazide units were used to investigate mechanistic aspects of helical structure formation during self‐assembly. The results suggest that there are three important aspects that control helical structure formation in such systems with acyl hydrazide/hydrazone linkage: i) J‐type aggregation, ii) the hydrogen‐bond donor/acceptor ability of the solvent, and iii) the dielectric constant of the solvent. The monomer units self‐assemble to form dimer structures through hydrogen‐bonding and further assembly of the hydrogen‐bonded dimers leads to macroscopic chirality in the present case. Dimer formation was confirmed by NMR spectroscopy and by mass spectrometry. The self‐assembly in the system was driven by hydrogen‐bonding and π–π stacking interactions. The morphology of the aggregates formed was examined by scanning electron microscopy, and the analysis suggests that aprotic solvent systems facilitate helical fibre formation, whereas introduction of protic solvents results in the formation of flat ribbons. This detailed mechanistic study suggests that the self‐assembly follows a nucleation–elongation model to form helical structures, rather than the isodesmic model.  相似文献   
25.
A series of luminescent polynuclear alkynylgold(I) complexes with different lengths of alkyl chains attached at the N‐heterocyclic carbene moieties has been synthesised and demonstrated to display intriguing self‐assembly behaviours through a cooperative growth mechanism. Variation of the alkyl chain length was found to cause drastic morphological differences in the aggregates and to strongly affect the thermodynamic parameters as revealed by the nucleation–elongation model.  相似文献   
26.
Supramolecular polyurethane ureas are expected to have superior mechanical properties primarily due to the reversible, noncovalent interactions such as hydrogen bonding interactions. We synthesized polyurethane prepolymers from small molecular weight of poly(tetramethylene ether)glycol and isophorone diisocyanates, which were end capped with propylamine to synthesize polyurethane ureas with high contents of urea and urethane groups for hydrogen‐bonding formations to facilitate self‐healing. The effects of polyurethane urea molecular weight (3000 ≤ Mn ≤ 9000), crosslinking, and cutting direction were studied in terms of thermal, mechanical, and morphological properties with an emphasis on the self‐healing efficiency. It was found that the thermal self‐healability was more pronounced as the molecular weight of polyurethane urea decreased, showing a maximum of more than 96% with 3000 Mn when the sample was cut along the stretch direction. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 468–474  相似文献   
27.
In this study, we combine magnetic solid phase extraction (MSPE), with the screen-printed carbon electrode (SPCE) modified by a molecular imprinted polymer (MIP) for sensitive and selective extraction and electrochemical determination of Rhodamine B in food samples. A magnetic solid phase extraction (MSPE) was carried out using magnetic poly(styrene-co-divinylbenzene) (PS-DVB) and magnetic nanoparticles (MNPs) synthetized on the surface of multiwalled carbon nanotubes (MWCNTs). An MIP was prepared on the surface of MWCNTs in the presence of titanium oxide nanoparticles (TiO2NPs) modifying the SPCE for the rapid electrochemical detection of Rhodamine B. The MIPs synthesis was optimized by varying the activated titanium oxide (TiO2) and multiwalled carbon nanotubes (MWCNTs) amounts. The MSPE and electrochemical detection conditions were optimized as well. The present method exhibited good selectivity, high sensitivity, and good reproducibility towards the determination of Rhodamine B, making it a suitable method for the determination of Rhodamine B in food samples.  相似文献   
28.
Organic electrode materials (OEMs) are being investigated as promising candidates for aqueous zinc-ion batteries (AZIBs) owing to their environmental friendliness, cost-effectiveness, and structural diversity, and tunability. Understanding the correlation between structural regulation of OEMs and their electrochemical property in AZIBs is vital to rational design of OEMs. Herein, we first discuss the fundamentals of the energy storage mechanism of OEMs. Then, strategies to improve the electrochemical performance, including the specific capacity, voltage, rate capability, and cycling stability, are elaborated from the perspective of molecular engineering. Finally, we share our views on the remaining challenges and prospects of OEMs in AZIBs.  相似文献   
29.
7Li, 31P, and 19F solid-state nuclear magnetic resonance (NMR) spectroscopy was used to investigate the local arrangement of oxygen and fluorine in LiVPO4F1-yOy materials, interesting as positive electrode materials for Li-ion batteries. From the evolution of the 1D spectra versus y, 2D 7Li radiofrequency-driven recoupling (RFDR) experiments combined, and a tentative signal assignment based on density functional theory (DFT) calculations, it appears that F and O are not randomly dispersed on the bridging X position between two X–VO4–X octahedra (X = O or F) but tend to segregate at a local scale. Using DFT calculations, we analyzed the impact of the different local environments on the local electronic structure. Depending on the nature of the VO4X2 environments, vanadium ions are either in the +III or in the +IV oxidation state and can exhibit different distributions of their unpaired electron(s) on the d orbitals. Based on those different local electronic structures and on the computed Fermi contact shifts, we discuss the impact on the spin transfer mechanism on adjacent nuclei and propose tentative signal assignments. The O/F clustering tendency is discussed in relation with the formation of short VIVO vanadyl bonds with a very specific electronic structure and possible cooperative effect along the chain.  相似文献   
30.
In this study, we demonstrate that an Mn-doped ultrathin Ni-MOF nanosheet array on nickel foam (Mn0.1-Ni-MOF/NF) serves as a highly capacitive and stable supercapacitor positive electrode. The Mn0.1-Ni-MOF/NF shows an areal capacity of 6.48 C cm−2 (specific capacity C: 1178 C g−1) at 2 mA cm−2 in 6.0 m KOH, outperforming most reported MOF-based materials. More importantly, it possesses excellent cycle stability to maintain 80.6 % capacity after 5000 cycles. An asymmetric supercapacitor device utilizing Mn0.1-Ni-MOF/NF as the positive electrode and activated carbon as the negative electrode attains a high energy density of 39.6 Wh kg−1 at 143.8 Wkg−1 power density with a capacitance retention of 83.6 % after 5000 cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号